We use cookies to enhance your experience on our website. By continuing to use our website, you are agreeing to our use of cookies. You can change your cookie settings at any time. Find out more

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide.

Price: $110.00

Hardback 512 pp.
171 mm x 246 mm



Publication date:
December 2016

Imprint: OUP UK

Share on Facebook

Add to Favourites Tell a Friend

The Evolution of Memory Systems

Ancestors, Anatomy, and Adaptations

Elizabeth Murray, Steven Wise and Kim Graham

Current theories about human memory have been shaped by clinical observations and animal experiments. This doctrine holds that the medial temporal lobe subserves one memory system for explicit or declarative memories, while the basal ganglia subserves a separate memory system for implicit or procedural memories, including habits. Cortical areas outside the medial temporal lobe are said to function in perception, motor control, attention, or other aspects of executive function, but not in memory.

The Evolution of Memory Systems advances dramatically different ideas on all counts. It proposes that several memory systems arose during evolution and that they did so for the same general reason: to transcend problems and exploit opportunities encountered by specific ancestors at particular times and places in the distant past.

Instead of classifying cortical areas in terms of mutually exclusive perception, executive, or memory functions, the authors show that all cortical areas contribute to memory and that they do so in their own ways - using specialized neural representations. The book also presents a proposal on the evolution of explicit memory. According to this idea, explicit (declarative) memory depends on interactions between a phylogenetically ancient navigation system and a representational system that evolved in humans to represent one's self and others. As a result, people embed representations of themselves into the events they experience and the facts they learn, which leads to the perception of participating in events and knowing facts.

The Evolution of Memory Systems is an important new work for students and researchers in neuroscience, psychology, and biology.

Readership : Students and researchers in cognitive psychology and cognitive neurscience, and evolutionary biology. Neuroscientists.

List of abbreviations
Part I. Foundations of memory systems
1. The history of memory systems
2. The history of the brain
Part II. Architecture of vertebrate memory
3. The reinforcement memory systems of early animals
4. The navigation memory system of early vertebrates
5. The biased-competition memory system of early mammals
Part III. Primate augmentations
6. The manual-foraging memory system of early primates
7. The feature memory system of anthropoids
8. The goal memory system of anthropoids
Part IV. Hominin adaptations
9. The goal and feature memory systems of hominins
10. The social-subjective memory system of hominins
11. The origin of explicit memory in hominins
Part V. Deconstructing and reconstructing memory systems
12. Deconstructing amnesia
13. Reconstructing memory's past

There are no Instructor/Student Resources available at this time.

Elisabeth A. (Betsy) Murray was raised with her three brothers in Syracuse, New York. She received a B.S. in Biology from Bucknell University in Lewisburg, Pennsylvania and a Ph.D. in Physiology from the University of Texas Medical Branch at Galveston, Texas. Dr. Murray is an elected Fellow of the Association for Psychological Science, of the American Psychological Association, and of the American Association for the Advancement of Science. She currently heads the Laboratory of Neuropsychology at the National Institute of Mental Health in Bethesda, Maryland. Steven P. Wise received a B.A. in Biology from Dartmouth College and a Ph.D. from Washington University (St. Louis) in Biology. After a brief period of postdoctoral study, he had a 30-year career in neurophysiology at the National Institute of Mental Health in Bethesda and Poolesville, Maryland. Dr Wise served as Chief of the Laboratory of Neurophysiology and Chief of the Section on Neurophysiology of the Laboratory of Systems Neuroscience. Kim S. Graham received a B.Sc. In Biological Sciences from Edinburgh University, followed by a Ph.D. from Cambridge University in Psychology. She subsequently worked as a research scientist at the MRC Cognition and Brain Sciences for 12 years, prior to moving to Cardiff University in 2007, where she is currently a Professor of Cognitive Neuroscience.

The Neurobiology of the Prefrontal Cortex - Richard E. Passingham and Steven P. Wise

Special Features

  • Clear, jargon-free review of brain evolution - requiring no background in evolutionary biology.
  • Glossary - Quick and easy access to the meaning of technical terms.
  • Includes overviews so that readers can understand the main points of each chapter in less than 200 words.
  • Proposals - Each of the principal chapters has a concrete proposal about the evolution of a particular representational system, in italics for ease of reference.
  • Extensive cross-referencing - Quick and efficient access to a more in-depth consideration of key points, which are explained elsewhere in the book.
  • Integration across disciplines - Readers will learn about ideas outside their area of expertise.